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Abstract — This paper proposes an extension of the 

unconditionally stable finite element time domain (FETD) 
method for the global electromagnetic analysis of active 
microwave circuits. This formulation has two advantages. 
First, the time step size is no longer governed by the spatial 
discretization of the mesh, but rather by the Nyquist 
sampling criterion. Second, the implementation of the 
truncation by the perfectly matched layers is 
straightforward. A benchmark test on a microwave amplifier 
indicates that this extended FETD algorithm is not only 
superior than FDTD-based algorithm in mesh flexibility and 
simulation accuracy, but also reduces computation time 
dramatically.   

I. INTRODUCTION 

Successful circuit design at microwave and millimeter 
wave frequencies requires considering electromagnetic 
coupling effects. This requirement can be fulfilled using a 
full-wave approach, which solves Maxwell’s equations 
while taking into account the interaction between 
electromagnetic waves and lumped elements 
comprehensively. Much effort has been devoted to the 
extension of the FDTD method to incorporate lumped 
microwave devices into 3-D full wave analysis [1]. 
Recently, the FETD algorithm [2] has been successfully 
applied in combination with SPICE to solve microwave 
circuits including lumped elements. Chang [3] used FETD 
to derive equivalent current sources and capacitances of 
distributed circuits to be combined with state equations of 
lumped element active microwave devices. Although this 
scheme gives better accuracy than FDTD-based techniques 
reported so far, the time step required to converge to a 
final solution is smaller than those required by explicit 
FDTD methods due to conditionally stability [4]. In this 
paper, an unconditionally stable FETD solution of 
microwave passive/active circuit based on Gedney’s 
method [5] is presented. Combining the anisotropic PML 
approach in the frequency domain as presented by Z. Sack 
et al [1] and in the time domain as in Mathis’ method [7], 
we also present how an anisotropic PML can be 
implemented in this unconditionally stable FETD scheme.  

II. THEORY 

A. Anisotropic PML for FETD Formulation 

This section will derive the finite element time domain 
formulation to be used when the perfectly matched 
anisotropic absorber is employed to terminate the 
computational domain. The derivation here is based on [6] 
and [7]. The general time-harmonic form of Maxwell’s 
equations is 
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diagonal in the same coordinate system. To match the 
intrinsic impedance of the anisotropic PML medium to 
free space, the condition: 
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Since we want to consider only the electric field in the 

calculation domain, Maxwell’s equations can be written as  
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Using (4) as the starting point, we can obtain a modified 
equation which can be utilized be derive the time domain 
formulation. Next, we want to isolate the dependences in ω 
in order to go to a temporal formulation 
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The next step is to convert the frequency domain 
formulation to the time domain version using the following 
relations: 
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Applying the above transformation, we can recast the 
Maxwell’s equation in the following form 
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Testing equation (8) with edge basis function W(1) 
associated with non-PEC edges of the grid, integrating by 
parts, and decomposing the unknown field E in a finite 
element basis yields the following weak form  

          [ ] [ ] [ ] [ ] [ ]
2

2

de d eA e B C D f E g I
dt dt

+ + + + = −              (9) 

where 
     ( ) [ ] [ ]( )2(1) (1) (1) (1)

2
0

1 2i j i jij
V

A W W J K W W dVε
µ ε

= ∇× ⋅∇× + + ⋅∫
 

     ( ) [ ] (1) (1)

0

2
i jij

V

B J W W dVε
ε

= ⋅∫
 

     ( ) (1) (1)
i jij

V

C W W dV= ⋅∫
  

      ( ) [ ] [ ](1) (1) (1) (1)
3

0 0

2 2
i j i jij

V

D I W W L W W dVε
µε ε

= ∇× ⋅∇× + ⋅∫
     

      ( ) [ ] [ ]2 2(1) (1) (1) (1)
2 4
0 0

1
i j i jij

v

E I W W K W W dVε
µε ε

= ∇× ⋅∇× + ⋅∫
 

      ( ) (1) i
ii

V

I W dV
t

∂= ⋅
∂∫
J  

 which are all time-independent matrices.  
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are the coordinates of the unknown field in the finite 
element basis. 

In the results presented by Gedney[8], it was clearly 
pointed out that the mismatch at the PML interface can be 
significantly reduced by carefully selecting the 
conductivity, σ, of the material. 

 

B. State Equation-FETD Combination 

In order to introduce lumped elements into the 3D 
FETD simulator, all vectors and matrices have been split 
to separate the unknowns associated to edges in the mesh 
in which the lumped elements are located (denoted by the 
subscript c), from those associated to standard edges 
(subscript e). Based on the method mentioned in [3], (9) 
can be recast into the following form  
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cf  and cg  are zero since the lump circuits are not inside 

the perfectly matched anisotropic absorber. Based on the 
Newmark-Beta formulation [9][10], (10) is approximated 
as   
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Gedney[5] has proved that unconditional stability is 
achievable, providing the interpolation parameter 1 4β ≥ . 
it was further shown that choosing 1 4β =  minimized 

solution error. Substituting 1+n
ee in (11) into (12) yields a 

set of 2nd order ordinary differential equations in terms of 
unknown ce . 
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To solve the above 2nd order ODE, let  
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which can be interpreted as a generalized Kirchoff law 
involving electric field and current at the terminals of the 
lumped elements included in the computational domain. 
(15) can be combined with the state equations of 
active/passive linear/nonlinear lumped element 

components to determine ee  and dI  . 
The computation procedure of the mixed 

electromagnetic and circuit simulation algorithm can be 
summarized as follows. Assume all the electric field 
quantities are known at time steps n-1 and n, and they are 
used to set up the known forcing vector[ ]F  in equation 

(14). Currents, dI  , and voltages, ee , across the lumped 
elements at time step n+1 are obtained by simultaneous 
solution of equations (15). The nonlinear differential 
equation (15) is discretized with a finite difference 
scheme, and then the resulting nonlinear system of 
equations is solved using a modified Powell hybrid 
algorithm and a finite-diffenrence approxiation to the 
Jacobian, provided by an IMSL routine. Once the 
combined system of equations (15) is solved, then currents 
and voltages across lumped elements are computed. They 
are fed back into equation (11) to compute the electric 
field at every edge in the grid at time step n+1. This time 
stepping scheme is repeated until the observation point 
after the drain of the device records the complete output 
response. 

 III. RESULT 

A microwave amplifier has been analyzed using this 
technique. Fig. 1 shows the layout of the simulated circuit 
using this technique. For comparison purposes, the circuit 
and the large signal model of the MESFET used are the 
same as that employed with the FETD technique in [3] the 
extended FDTD technique in [11]. The circuit is shielded 
and the end wall is terminated by a twenty-cell PML 
medium.σ  is chosen to be specially variant along the 
normal axis as  

                        
2

0
2

4 | |z z
d

σ −=  

where z0 is the interface, d is the depth of the PML. 
The DC bias condition of this amplifier, Vgs = -0.81V 

and Vds = 6.4 V, is provided by the two power supplies 
connected at gate and drain, while the RF source is 
represented by the generator connected to the gate. A 
modulated Gaussian pulse with central frequency at 5 GHz 
is used to excite the circuit. The mixed electromagnetic 
and circuit simulation algorithm outlined in the previous 
sections requires considering electromagnetic/circuit 
interaction at four locations: the input generators, the 
device input (gate) and output (drain) terminals, and the 
load/drain power supply. Fig. 2 shows the three equivalent 
circuits used. The first models interactions between the 
input generator and the input microstrip line; the second 
describes interactions between the MESFET and its input 
and output microstrip lines, and the third account for the 
coupling between the load and drain power supply with the 
output microstrip line. The distributed passive part of the 
microwave amplifier is represented via the Norton 
generators with capacitive internal admittance. The value 
of the Norton sources and their internal capacitance is 
derived by the matrix equation (14). 

1 2 3 4

Fig. 1. The structure of a microwave amplifier. 
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Fig. 2. The equivalent circuit (Nc = 4). 
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A FORTRAN program has been implemented. The 
number of the unknown electric fields to be solved in this 
mesh is 303198. The mesh had a minimum tetrahedral 
radius of h=25 mil. The time step size, 3.5 ps, is 10 times 
bigger than that in [4] and the number of computation time 
steps is reduced to 2500. The running time is 50 minutes 
on a PC Pentium II 450 MHz. Fig. 3 shows the time 
domain response of the amplifier when a Gaussian 
modulated pulse is applied at its input. Fig. 4 shows a 
good comparison of the scattering parameters of the 
amplifier with the result obtained with the FETD method 
in [4] shown.  

IV. CONCLUSION 

The extended FETD algorithm based on an 
unconditionally stable solution of the vector wave equation 
has been used to analyze a microwave amplifier in this 
paper. The result not only retains the accuracy of the 

FETD method in [4] but also shows that the number of 
time iterations required can be significantly reduced. As 
long as the optimal parameters of perfectly matched layer 
are found, this implicit method can be competitive with 
an explicit method.  
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Fig. 3. Time response of the microwave amplifier 
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Fig. 4. Small-signal analysis of the microwave amplifier. 
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